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SUMMARY:

This memo summarizes the integrated structural-optical model of SONATA created in

IMOS. The model is used to �nd the open-loop stellar interferometer optical pathlength

di�erence and total di�erential wavefront tilt variations resulting from reaction wheel force

and torque disturbances, as a function of wheel speed. The open-loop disturbance analysis

investigates the e�ectiveness of vibration isolation and structural quieting at disturbance

attenuation.
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Introduction

A fundamental technical challenge for large-baseline distributed-optics spacecraft is to

maintain the relative position of optical elements mounted on a lightweight and relatively

soft structure. The proposed solution has been to use a layered control methodology

consisting of: 1) disturbance isolation, 2) structural quieting, and 3) high bandwidth

optical control [1]. The �rst layer either seeks to attenuate the disturbances entering the

structure (the \noisy box" application) or it isolates a payload from the structure (\quiet

box" application) [2]. The second layer quiets the structure by replacing truss members

with damping struts, performing two functions: reducing the disturbance transmitted

through the structure and conditioning the plant for the optical control systems. The

third layer actively rejects the residual disturbances observable in the optical output.

The e�ectiveness of the isolation layer and the disturbance attenuation function of the

structural quieting layer is assessed for SONATA in the following analysis.

An integrated structural-optical model of SONATA has been created in order to pre-

dict open-loop and closed-loop performance and thereby to evaluate the proposed layered

control architecture. This modeling was performed in Matlab, using the Integrated Mod-

eling of Optical Systems (IMOS) toolbox developed at JPL.

This memo describes the open-loop disturbance analysis used to evaluate the e�ec-

tiveness of the isolation layer and the disturbance attenuation function of the structural

quieting layer. This analysis is performed for three cases: 1) no isolation with no struc-

tural quieting, 2) isolation with no structural quieting, and 3) no isolation with structural

quieting.

The analysis incorporates a Hubble Space Telescope (HST) reaction wheel disturbance

model [3]. Given this disturbance model, the steady state stellar optical pathlength

di�erence (OPD) and stellar di�erential wavefront tilt (DWT) variations are calculated

for a range of reaction wheel speeds. An intrinsic modal damping of 0.1% is assumed.

Structural quieting is modeled by increasing the modal damping to 5%. When isolated,

the reaction wheel is assumed to be isolated in all six degrees of freedom, consistent with

a hexapod isolator. The model uses a passive isolator with a cuto� frequency of 4 Hz.

Structural Finite Element Geometry

The �nite element geometry of SONATA is shown in Figure 1. The model includes the

instrument truss, the spacecraft bay truss, the solar panel, and the optical plates. For

the sake of clarity, the instrument and spacecraft bay trusses are shown separately in

Figure 2.
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Figure 1: SONATA Finite Element Geometry

Truss Geometry

The instrument truss is the rectangular truss that runs the length of the model. This truss

holds the three optical plates, and is composed of aluminum beams and plate elements [4].

The plate elements are placed around the outside of the truss and between the bays of

the truss. The beams are assumed to be radially symmetric with a crossectional area of

1.9x10�4 m2 and a bending moment of inertia 5.78x10�8 m4. The plates are modeled as

honeycomb sandwich with sheet thickness of 16 mils and a plate thickness of 1/4 inch.

The spacecraft bus is the trapezoidal truss structure at one end of the instrument

truss. This bus houses the spacecraft ight system hardware. Of particular concern are

the reaction wheel assemblies (RWAs) since they emit the only signi�cant mechanical

disturbances. The spacecraft bus is a truss covered with sandwich plate using the same

properties as the instrument truss.

Solar Panel Geometry

The solar panel is attached to and acts as a shield for the spacecraft bus. The solar panel

is three sides of an octagonal cylinder and is attached to the bus at its edges with beam

elements. The solar panel itself is made up of plate elements. For simplicity, the solar
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Figure 2: SONATA Spacecraft Bus and Instrument Truss

Finite Element Geometry

panel plates and support truss beams are assumed to have properties similar to those of

the instrument truss.

Optics Plate Geometries

The three optics plates are located two at either end of the instrument truss and one in

the center. The end plates contain the siderostats and the beam compressors, whereas the

center plate holds the delay lines, the beam combiner, and the detector. The plates are

modeled with rigid body elements (RBEs). The center of mass of each plate is connected

to several truss nodes of the nearest bay using RBE3 elements. The RBE3 element �nds

the average motion (in a least squares sense) of the several truss nodes and assigns this

motion to the plate center of mass. The optics nodes are then connected by an RBE2

to the plate center of mass. The RBE2 constrains motion of one node by the motion of

another node, modeling a perfectly rigid connection. The plates are assumed to be rigid

in order to limit the size of the model.

SONATA will have two wavefront tilt actuators for each interferometer arm, one two-

axis siderostat and one two-axis fast steering mirror. For simplicity, only one two-axis

actuator is modeled for each interferometer arm. The actuators are located on the end
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plates and have a mass of 0.5 kg and inertias of 6.25x10�4 kgm2 (spin axis) and 3.13x10�4

kgm2 (tip/tilt axes). The mirrors are assumed to be mounted exibly in all six degrees of

freedom, with a resonance of 500 Hz. This frequency was chosen to model a fast steering

mirror actuated by a set of PZT stacks, since this is the critical actuator in the wavefront

tilt control system.

SONATA will have four optical delay lines, one for each interferometer associated with

a quadrant of the narrow �eld. Since only three interferometers are essential for modeling

the OPD feed forward (i.e., two guide interferometers and one science interferometer),

only three delay lines are modeled. The delay line models are based on the MPI delay

lines. Each delay line is mounted on a exure with a resonance of 1.15 Hz. Furthermore,

they each have an internal defocus mode at 500 Hz and a PZT stack resonance mode

at 4 kHz. The total delay line mass is 7.7 kg, with 5.5 kg mounted on the exure.

Two levels of actuation are modeled: the voice coil moving the exibly mounted primary

and secondary mirror support structure (a.k.a., \cat's eye"), and the reactionless PZT

actuating the secondary mirror.

The open-loop disturbance analysis described in this memo assumes that the fast

steering mirrors and the delay lines are rigid, in order to discern the magnitude of the

disturbance problem for SONATA without control. The exibilities are not included since

they are inherent to the closed loop actuators. The exibilities will be included in the

closed-loop analysis.

Modal Solution

Once the �nite element geometry and properties are speci�ed, the element mass and

sti�ness matrices are assembled into the systemmass and sti�ness matrices. This includes

concentrated masses (CONMs) of the optics and of the spacecraft ight system hardware.

The result is a second order state space description of the form:

M �d+Kd = Bff (1)

where M and K are the system mass and sti�ness matrices, d is the nodal state, f is a

vector of force input, and Bf is the force inuence matrix.

After the system mass and sti�ness matrices are built, multi-point constraints are

generated using the RBE elements. These constraints take the form of:

d =

"
dn
dm

#
=

"
In
Gm

#
dn = Gdn (2)

where dn are the independent degrees of freedom and dm are the dependent degrees of

freedom. These constraints are then applied to Eq. 1, reducing the state of the system to
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Figure 3: SONATA Lowest Global Flexible-Body Mode-

shape

the independent degrees of freedom:

GTMG �dn +GTKGdn = GTBff

Mnn
�d+Knnd = Bnff (3)

The eigensolution of Eq. 3 is found, yielding rigid-body and exible body modes and

modeshapes. The lowest global exible body modeshape is shown in Figure 3. The

resultant diagonalized system is:

�� + 2Z
 _� + 
2� = �T
nBnff

d = G�n� (4)

where � is the modal state vector, Z is a diagonal modal damping matrix, 
 is the diagonal

modal frequency matrix, and �n is the eigenvector matrix. Z is formed by assuming a

uniform modal damping of 0.1% for all exible body modes except the delay line exure

modes. When the delay line exure modes are included in the model, they have 5% modal

damping.

Stellar and Internal Metrology Optical Prescriptions

Two optical prescriptions were generated for the SONATA model: a prescription of the

stellar interferometer for modeling stellar OPD, wavefront tilt, and DWT and 2) a pre-

scription of the internal metrology system for modeling internal OPD measurement. Each
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Figure 4: SONATA Stellar Interferometer Optical Pre-

scription

of the two prescriptions is used three times for the three di�erent interferometers men-

tioned above. Each prescription was speci�ed and plotted in IMOS.

A ray trace of the stellar interferometer prescription is shown in Figure 4. The �rst

mirror in the optical train is the siderostat mirror. This mirror is used as the actuator

for the wavefront tilt control system as mentioned above. The starlight aperture is 0.4

m. Just after the siderostat is the starlight beam compressor with a compression ratio

of 8 and an f/# of 2. Next in the beam train of the left interferometer is the delay line,

modeled as at mirrors for simplicity. The light strikes the at \primary" (closest to the

beam combiner), then the at \secondary," back to the primary, and �nally strikes a �xed

\fold" mirror that directs it to the beam combiner. The fold mirror is coincident with

the secondary mirror, but is attached to the optics plate directly. In this way, the e�ect

on OPD of voice coil and PZT actuation are accurately modeled, i.e., voice coil and PZT

actuation cause an OPD of twice the motion. The inaccuracy of the model due to the at

delay line mirrors is in the absence of second-order defocus e�ects attendant to secondary

mirror actuation and second-order e�ects of cat's eye rotation.

The internal metrology prescription is shown in Figure 5. This prescription has its

input plane, the plane where the light originates, connected to the structure at the stellar

interferometer detector location [5]. Beginning here, the light is traced down the optical

train in the direction opposite that of the stellar interferometer. The optical elements

are the same, albeit in reverse order, until after the beam compressor. At this point the

internal metrology strikes a cornercube retro-reector instead of the siderostat mirror and

is reected back down the optical train to a detector coincident with the input plane.
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Figure 5: SONATA Internal Metrology Optical Prescrip-

tion

Linear Optical Model

Once the optical prescriptions are generated, they are exported to COMP, where linear

optical models are created [5]. These linear models are calculated by performing an

analytic di�erential ray trace. The result is a model of the form:

y = Coptd (5)

where d is a vector of optical element position and orientation perturbations, y is a vector

of optical output, and Copt is the optical sensitivity matrix, commonly known as the

\C-matrix" to COMP a�cionados. The optical output can be di�erential pathlength,

wavefront tilt, or spot motion.

A linear model was created for each optical prescription. The output of the stellar

interferometer model is stellar OPD variation, stellar wavefront tilt variation for each

arm of the interferometer about two axes, and the DWT between the two arms of the

interferometer (about two axes). The output of the internal metrology model is internal

OPD.

Integrated Structures-Optics Model

Once the structural modal model and the linear optical models have been created, they

are integrated to form a structures-optics model. The structural model is �rst truncated

according to the inuence of the modes in the disturbance-to-optical output transfer func-

tions using Hankel singular values. This resultant model includes correction vectors that
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account for the sti�ness of the modes lost in the truncation. Next the model is converted

into �rst-order state space form enabling the use of standard Matlab analysis functions.

Finally, the input and output are manipulated to include not only the disturbances and

stellar optical metrics, but also the sensor output and actuator input for the pathlength,

wavefront tilt, and attitude control systems. The resulting model is available for open-loop

and closed-loop disturbance analyses.

Model Reduction

In order to reduce the size of the model, the modes are truncated according to their

inuence in the end-to-end transfer functions. This inuence is measured by the Hankel

singular value (known as \second-order mode" of the internally balanced realization in [6])

associated with each modeshape. In this case, the Hankel singular values, i, are:

i =

q
(bmib

T
mi) (c

T
micmi)

4� i!2
i

(6)

Bm = �T
nG

TBf

Cm = CoptG�n

where � i and !i are the damping and frequency associated with mode i, bmi is the i
th row

of Bm, and cmi is the i
th column of Cm.

The model was truncated to include the six rigid body modes, all fast steering mirror

and delay line dynamics, and the 30 most inuential of the remaining exible body modes.

Bf was chosen so that the input, f , are forces and torques at the reaction wheel node.

In order to account for the low frequency sti�ness of the eliminated modes, static

correction vectors are included in the set of kept modeshapes. A static correction vector

(a.k.a. a Ritz vector in [7]) is found for each input of f . In [8] the correction vectors are

calculated according to:

�c = K�1B � �T
k


�2
k �kB (7)

where K is the system sti�ness matrix, B is the force inuence matrix, 
k and �k are

the modes and modeshapes of the kept modes, and �c are the correction vectors.

In the case of the SONATA model however, Knn is not invertible since the model has

rigid body modes. Instead of calculating the overall static solution and subtracting the

component associated with the kept modeshapes, the component of the static solution

related to the lost modeshapes is found directly:

�c = �T
t 


�2
k �tB (8)

where �t are the modeshapes lost in the truncation (i.e., truncated modeshapes).
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Incorporating the multi-point constraints, the correction vectors for SONATA are

calculated according to:

�nc = �T
nt


�2
k �ntG

TBf (9)

where �nt is a matrix of truncated modeshapes (independent dofs only), 
k is the corre-

sponding modal frequency matrix, and �nc is a matrix of the correction vectors.

First-Order State Space Model

The truncated modal model is then converted into �rst-order form by using the substitu-

tion:

x =

"
�r
_�r

#
(10)

Resulting in:

_x = Ax+Bu"
d
_d

#
= Cdx+Du (11)

with:

A =

"
0 I

�2Zr
r �
2
r

#
B =

"
0

�T
nrG

TBf

#

Cd =

"
G�nr 0

0 G�nr

#
D = 0

(12)

where the subscript r refers to the set of kept modeshapes and correction vectors:


r =

"
0 0

0 
k

#
Zr =

"
0 0

0 Zk

#

�nr =
h
�nc �nk

i (13)

and Zk is the modal damping associated with the kept modal state.

Input and Output Manipulation

Reaction wheel disturbance input and stellar OPD and DWT output are required for the

disturbance analysis. In order to enable closed-loop modeling, actuator input and sensor

output must be included. Actuator input are tip-tilt torques of the fast steering mirrors,

reactionless PZT forces and voice coil forces of the delay lines, and attitude control torques.

Sensor output are angular position and rate at the node where the inertial reference unit

is located, wavefront tilt in two axes for each interferometer arm, and internal metrology

OPD.
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The matrix Bf is de�ned to include the disturbance and the control actuation input.

The IRU output are selected from the output of Eq. 11, by premultiplying by an appro-

priate matrix, Cgyro. The optical output are obtained by premultiplying d by the optical

sensitivity matrix, Copt. In this case the C matrix of the measurement equation of Eq. 11

becomes:

C =

"
Copt 0

Cgyro

#
Cd (14)

Note that the D matrix of Eq. 11 is still zero but now has di�erent dimension.

Open-Loop Disturbance Analysis

The open-loop disturbance analysis is performed for three cases: 1) hardmounted RWA

with no structural quieting, 2) isolated RWA with no structural quieting, and 3) hard-

mounted RWA with structural quieting. The results are shown in the subsequent �gures,

one of DWT and OPD in each case for a total of six. First, the analysis methodology

and output are described. Next, the disturbance requirements are developed. Last, the

isolation and structural quieting models are described and the results are given.

Disturbance Analysis Method

The disturbance analysis consists of exciting the integrated model with reaction wheel

disturbance spectra in order to obtain stellar OPD and DWT. The reaction wheel distur-

bance spectra are generated from the narrowband model of the Hubble Space Telescope

(HST) wheels described in [3]. This model is based on testing of the HST ight units.

Since the reaction wheel disturbances are a function of the reaction wheel speed, and

since the reaction wheel speed will vary as described in [9], the disturbance analysis is

parameterized according to wheel speed. That is, for each reaction wheel speed the root-

mean-squared OPD and DWT variations for a single interferometer are found. This rms

OPD or DWT is plotted as a function of wheel speed, (e.g., Figure 6). Furthermore,

in order to characterize the rms OPD and DWT over all wheel speeds with a single

number, the root-mean-square of the parameterized optical metric over all wheel speeds

is calculated (i.e., the L2 norm). This metric may be confusing, and is discussed in more

detail in [3]. The L2 norm is given in the y-axis label of the following �gures.

Instead of performing the analysis with three or four wheels, making the wheel speed

parameterization multi-dimensional, the analysis assumes a single wheel mounted with

its axis in the z-direction (refer to Figure 4). The reaction wheel's orientation has little

bearing on the resultant OPD and DWT. Variation of roughly a factor of two between

wheel orientations along di�erent coordinate axes has been observed with the SONATA

integrated model, with the z-axis orientation being the worst case.
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The DWT output of the model are DWT about the two axes in the plane of the

detector, �x and �y. The quantity that a�ects the fringe visibility, however, is the the

magnitude of the vector sum of the DWT about the two detector axes, known as the total

DWT, �DWT :

�DWT =
q
�2
x + �2

y (15)

As a matter of preference, the OPD and DWT variation are given in terms of wave-

lengths of starlight. The reference wavelength, �o, is the center wavelength of the stellar

interferometer, 550 nm. The conversion from OPD in meters, �OPD, and DWT in radians,

�DWT , is according to:

�OPD =
�OPD

�o

�DWT = �DWT
d

�o
(16)

where �OPD and �DWT are OPD and DWT in waves, and d is the beam width at the

detector.

Pathlength and Wavefront Tilt Requirements

The OPD and DWT requirements derive from a stellar fringe visibility requirement of

90% [10]. Dividing this evenly between DWT and OPD the requirement for the contri-

bution of each is 95% (i.e., 0:9
1

2 ). Since the disturbances resulting from di�erent wheel

orientations are roughly equivalent, the requirement is evenly divided among four RWAs,

yielding a requirement for a single RWA of 98.7% for each of OPD and DWT.

Using Eq.17 for visibility, V , the requirements are converted into OPD and DWT

variation in waves [10]. The OPD and DWT requirements for a single RWA in waves are

�/39 and �/10, respectively. These correspond to 14 nm of OPD and 1.1 �rad of DWT.

These requirements are represented in the subsequent disturbance analysis �gures as a

dashed line.
V = e�

1

2
(2��OPD)2 for OPD

V = e�1:23�
2

DWT for DWT
(17)

Disturbance Analysis Results

The OPD and DWT variation for the hardmounted RWA with no structural quieting are

shown in Figures 6 and 7. Both OPD and DWT variation are well above the requirement

for a large range of wheel speeds, particularly for higher wheel speeds. At worst, the OPD

variation is two orders of magnitude larger than the requirement, and DWT variation is

a factor of 20 larger.
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The results for an isolated RWA without structural quieting are shown in Figures 8

and 9. In this case, the isolation was modeled by low-pass �ltering the disturbance input

in all six degrees of freedom. This �ltering is consistent with a hexapod isolator, but it

assumes that there are no dynamic interactions between the isolator and the rest of the

structure. This is not actually the case, because the non-proportional damping in the

struts will cause coupling between the hexapod modes and the modes of the structure.

The e�ects of this coupling, however, may or may not be detrimental to the overall

disturbance analysis as compared to the uncoupled model. This assumption simpli�ed

the modal truncation. The isolation model has a resonance of 4 Hz that is damped at 3%

of critical [11]. The requirements are met for DWT and are met at all but the low wheel

speeds for OPD variation. The low frequency peaks of the OPD variation correspond to

excitation of the lightly damped isolator resonance.

The results for a hardmounted RWA with structural quieting are shown in Figures 10

and 11. The structural quieting was modeled by increasing the modal damping from 0.1%

to 5% for all modes. This damping level is consistent with modal damping of the CSI

Phase B testbed with optimally placed dampers for lower frequency modes (< 100 Hz) [1].

It is optimistic, however, for the higher frequency modes, because the damping struts

impart damping primarily in the axial direction. They will provide very little damping

of modes involving strut bending, regardless of placement. These modes are generally

at higher frequency. This would tend to make the results worse, particularly for higher

wheel speeds. The requirement is met for DWT, but is not met for OPD, although there

is signi�cant improvement.

The results for the three cases are summarized in Table 1.

Case OPD Variation DWT Variation

L2 norm Max L2 norm Max

�o nm �o nm �o nrad �o nrad

1 0.332 183 3 1,650 0.243 2,600 1.6 17,600

2 8.42x10�3 4.63 0.07 39 2.07x10�4 2.27 1.7x10�3 21

3 4.13x10�2 22.7 0.09 50 1.74x10�2 191 3.9x10�2 429

Reqmnt | | 2.56x10�2 14 | | 0.1 1,100

Table 1: Results of the Open-Loop Disturbance Analysis.

Conclusion and Future Work

An integrated structures-optics model has been described that enables end-to-end open-

loop disturbance modeling. Furthermore, the model includes actuator input and sensor
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output for the internal and stellar pathlength control, wavefront tilt control, and attitude

control, allowing for closed-loop modeling.

This model has been used to perform an open-loop disturbance analysis, variously

incorporating RWA isolation and structural quieting. OPD and DWT variation are used

as optical performance metrics, and requirements are generated for both. The modeled

disturbances are RWA vibrations. The disturbance analysis is parameterized by wheel

speed, given that it may vary between observations.

Without any disturbance attenuation layers, the performance is up to two orders of

magnitude worse than the requirement, with the problem in the moderate to high wheel

speeds. When the RWA is isolated, the requirements are met for moderate and high wheel

speeds, but are slightly exceeded for low wheel speeds. In this case the problem is the

lightly damped resonance of the isolator itself. When structural quieting alone is used, the

requirements are met for low and moderate wheel speeds, but are not met for high wheel

speeds. Furthermore, the structural damping assumed for the higher frequency modes is

optimistic.

Presently, closed-loop disturbance analyses of the wavefront tilt control system and

the pathlength control systems are being performed. These analyses also incorporate

closed-loop attitude control modeling. Further work ought to include: 1) a more detailed

structural quieting analysis, using discrete damping elements and a damper placement

and tuning design [12] and 2) an in-depth isolation design, incorporating non-proportional

damping struts and investigating active isolation options [2].
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Figure 6: Case 1 - SONATA RWA Induced OPD Varia-

tion for Hardmounted RWA with no Structural Quieting
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Figure 7: Case 1 - SONATA RWA Induced DWT Varia-

tion for Hardmounted RWA with no Structural Quieting
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Figure 8: Case 2 - SONATA RWA Induced OPD Varia-

tion for Isolated RWA with no Structural Quieting
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Figure 9: Case 2 - SONATA RWA Induced DWT Varia-

tion for Isolated RWA with no Structural Quieting

16



0 500 1000 1500 2000 2500 3000
10

-5

10
-4

10
-3

10
-2

10
-1

Reaction Wheel Speed (RPM)

O
P

D
 v

ar
ia

tio
n 

(la
m

bd
a)

: r
m

s 
ov

er
 R

P
M

 =
 4

.1
3e

-0
2 

la
m

bd
a

Figure 10: Case 3 - SONATA RWA Induced OPD Vari-

ation for Hardmounted RWA with Structural Quieting
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Figure 11: Case 3 - SONATA RWA Induced DWT Vari-

ation for Hardmounted RWA with Structural Quieting
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